Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction.

نویسندگان

  • C R Keller-Peck
  • G Feng
  • J R Sanes
  • Q Yan
  • J W Lichtman
  • W D Snider
چکیده

Overexpression of glial cell line-derived neurotrophic factor (GDNF) in embryonic muscle fibers causes dramatic hyperinnervation of neuromuscular junctions. However, it is not known whether GDNF induces the extra innervation by regulation of axonal branching and/or synaptic maintenance. To address this issue, high levels of circulating GDNF were established by administering subcutaneous injections starting either at birth or later and continuing for up to 40 d. Treatment with exogenous GDNF beginning in the first week, but not later, increased the number of axons converging at neuromuscular junctions. The effect of GDNF on the branching pattern of individual motor axons was determined by reconstructing labeled axonal arbors from transgenic mice expressing yellow fluorescent protein in subsets of motor neurons. Whereas, at postnatal day 8 (P8) individual axons in control animals branched to sporadically innervate junctions within circumscribed regions of the muscle, motor units from GDNF injected animals had significantly more axonal branches and exhibited a high degree of localized arborization such that adjacent muscle fibers were often innervated by the same axon. Administration beginning at P0 and continuing through P40 prolonged multiple innervation of most fibers throughout the period of injection. Between P30 and P40 there was no net change in multiple innervation, although there was evidence of retraction bulbs, suggesting that axon extension and retraction were in equilibrium. We conclude that GDNF has a developmentally regulated effect on presynaptic branching and that sustained administration of GDNF induces a state of continuous synaptic remodeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells

Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...

متن کامل

Neurotrophic factors increase neuregulin expression in embryonic ventral spinal cord neurons.

Neuregulins (NRGs) are expressed in spinal cord motor neurons and accumulate at the neuromuscular junction where they may increase the synthesis of postsynaptic acetylcholine receptors and voltage-gated sodium channels. We demonstrate here that NRG expression is selectively increased in rat ventral spinal cord neurons at approximately the time that nerve-muscle synapses first form. A rapid incr...

متن کامل

The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury

Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...

متن کامل

Regulation of neuromuscular synapse development by glial cell line-derived neurotrophic factor and neurturin.

Glial cell line-derived neurotrophic factor (GDNF) is known for its potent effect on neuronal survival, but its role in the development and function of synapses is not well studied. Using Xenopus nerve-muscle co-cultures, we show that GDNF and its family member neurturin (NRTN) facilitate the development of the neuromuscular junction (NMJ). Long-term application of GDNF significantly increased ...

متن کامل

Loss of glial neurofascin155 delays developmental synapse elimination at the neuromuscular junction.

Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 16  شماره 

صفحات  -

تاریخ انتشار 2001